West Antarctic Ice Sheet retreated far inland before the Ice Age

A lake under a kilometre of ice preserves the West Antarctic Ice Sheet’s past and hints at possibility of advancing even after large-scale retreat

The West Antarctic Ice Sheet is melting rapidly, raising concerns it could cross a tipping point of irreversible retreat in the next few decades if global temperatures rise 1.5 to 2.0°C (2.7 to 3.8°F) above preindustrial levels.

New research finds that 6,000 years ago, the grounded edge of the ice sheet may have been as far as 250 kilometres (160 miles) inland from its current location, suggesting the ice retreated deep into the continent after the end of the last ice age and re-advanced before modern retreat began.

Ryan Venturelli, a palaeoglaciologist at Colorado School of Mines and lead author of the new study, said: “In the last few thousand years before we started watching, ice in some parts of Antarctica retreated and re-advanced over a much larger area than we previously appreciated.

“The ongoing retreat of Thwaites Glacier is much faster than we’ve ever seen before, but in the geologic record, we see the ice can recover.”

The new research presents the first geologic constraint for the ice sheet’s location and movement since the last ice age.

The grounding line is where a glacier or ice sheet leaves solid ground and begins to float on water as an ice shelf.

Today, the Ross Ice Shelf extends hundreds of miles over the ocean from the grounding line of the West Antarctic Ice Sheet.

Because ocean water washes up against the leading edge of the ice, the grounding line can be a zone of rapid melting.

Venturelli said: “The concern of grounded ice loss is because the loss of ice on land is what contributes to sea level rise.

“As grounding lines retreat farther inland, the more vulnerable the ice sheet becomes as it exposes thicker and thicker ice to the warming ocean.”



The last ice age


During the Last Glacial Maximum, about 20,000 years ago, the West Antarctic Ice Sheet was so large that it was grounded on the ocean floor, beyond the edge of the continent.

Previous observations generally indicate a steady retreat since then, accelerated in the last century by human-caused climate change.

The question for Venturelli was just how far inland the ice sheet had retreated after the last ice age.

Without knowing that, it’s hard to predict how sensitive the Antarctic Ice Sheet is and how it will respond to further climate change.

A lake about twice the size of Manhattan buried under a kilometre (0.6 miles) of ice and sealed off from today’s atmosphere held clues to the answer.

To reach it, Venturelli and her team carefully melted their way in with a hot water ‘drill’. Once they had access, they pulled up samples of lake water and carbon-filled sediments from the lake bed. Using radiocarbon dating, they found the carbon was about 6,000 years old.

Because radiocarbon (carbon-14) in these sediments must have come from seawater, the finding suggests that what is now a lake 150 kilometres (93 miles) from the modern ice edge was the floor of the ocean.

When the ice advanced, it capped off the lake, preserving the carbon as part of the lake bottom’s sediments. And based on radiocarbon in water sampled from the same lake, the grounding line could have been 100 kilometres (62 miles) even further inland at that time.


Ice history


Venturelli said: “When we set out to sample this lake, we weren’t sure what we would find out about ice history, but the fact that deglaciation persisted this far inland was not that wild of a possibility.

“This area of West Antarctica is really flat. There is nothing to put brakes on the retreat of the grounding line. No real topographical doorstops.”

The new evidence of Antarctic ice’s ability to make a comeback was welcome news for Venturelli.

She said: “It can be a bummer sometimes, studying ice loss in Antarctica.

“Although the re-advance identified in the geologic record happens over thousands of years, I like to think of studying the process of reversibility as a little shred of hope.”

The next big question for Venturelli and her co-authors is assessing what conditions enabled the ice’s re-advance.

One possibility is the rebound after release from the massive weight of the ice sheet lifted the land enough to hold back the ocean and allow the ice to regrow.

Another possibility is that slight changes in climate enabled the ice sheet to switch from retreat to advance. It could have been a combination of these influences.

The study appears in AGU Advances.

Image 1: To reach the subglacial lake, the team drilled through the ice with hot water and UV-sterilised equipment.

Image 2: The West Antarctic Ice Sheet retreated at least 250 kilometres (160 miles) inland of where the ice meets the ocean today, then re-advanced, according to new research published in AGU Advances. Scientists traced the ice’s movement using sediments from a lake more than 1 kilometre (0.6 miles) under the ice, sampled using the corer in this photo.

Both images: Credit Billy Collins (CC-BY 2.0) https://creativecommons.org/licenses/by/2.0/legalcodes.

Research Aether / Earth Uncovered

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 4 May 2023

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM