Mysterious diamonds could be result of collision between an asteroid and dwarf planet

Mysterious diamonds could be result of collision between an asteroid and dwarf planet

Researchers say diamonds from an ancient dwarf planet could have resulted from a collision with an asteroid.

Strange diamonds from an ancient dwarf planet in our solar system may have formed shortly after a collision with a large asteroid about 4.5 billion years ago, according to scientists.

The research team says they have confirmed the existence of lonsdaleite, a rare hexagonal form of diamond, in ureilite meteorites from the mantle of the dwarf planet.

Lonsdaleite is named after the famous British pioneering female crystallographer Dame Kathleen Lonsdale, who was the first woman elected as a Fellow to the Royal Society.

The team, led by geologist Professor Andy Tomkins from Monash University, along with scientists from RMIT University, CSIRO, the Australian Synchrotron and Plymouth University – found evidence of how lonsdaleite formed in ureilite meteorites.

One of the senior researchers involved, Professor Dougal McCulloch, director of the RMIT Microscopy and Microanalysis Facility, said the team predicted the hexagonal structure of lonsdaleite’s atoms made it potentially harder than regular diamonds, which had a cubic structure.

He stated: “This study proves categorically that lonsdaleite exists in Nature. We have also discovered the largest lonsdaleite crystals known to date that are up to a micron in size – much, much thinner than a human hair.”

The team says the unusual structure of lonsdaleite could help inform new manufacturing techniques for ultra-hard materials in mining applications.

Diamond formation

McCulloch and his RMIT team, PhD scholar Alan Salek and Dr Matthew Field, used advanced electron microscopy techniques to capture solid and intact slices from the meteorites to create snapshots of how lonsdaleite and regular diamonds formed.

“There’s strong evidence that there’s a newly discovered formation process for the lonsdaleite and regular diamond, which is like a supercritical chemical vapour deposition process that has taken place in these space rocks, probably in the dwarf planet shortly after a catastrophic collision,” McCulloch said.

“Chemical vapour deposition is one of the ways that people make diamonds in the lab, essentially by growing them in a specialised chamber.”

Supercritical fluid

Tomkins said the team proposed that lonsdaleite in the meteorites formed from a supercritical fluid at high temperature and moderate pressures, almost perfectly preserving the shape and textures of the pre-existing graphite.

“Later, lonsdaleite was partially replaced by diamond as the environment cooled and the pressure decreased,” said Tomkins, an ARC Future Fellow at Monash University’s School of Earth, Atmosphere and Environment.

“Nature has thus provided us with a process to try and replicate in industry. We think that lonsdaleite could be used to make tiny, ultra-hard machine parts if we can develop an industrial process that promotes replacement of pre-shaped graphite parts by lonsdaleite.”

Tomkins added the study findings helped address a long-standing mystery regarding the formation of the carbon phases in ureilites.

The findings are published in the Proceedings of the National Academy of Sciences (PNAS).

Image: Professor Andy Tomkins (left) from Monash University with RMIT University PhD scholar Alan Salek and a ureilite meteor sample. Credit: RMIT University.

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM