Efficient mRNA delivery by branched lipids

Efficient mRNA delivery by branched lipids

Scientists in Japan have discovered a novel way to use branched lipids in the delivery of mRNA

Messenger RNA (mRNA) are biological molecules that transfer the information coded by genes in the nucleus to the cytoplasm for protein synthesis by ribosomes. mRNA sequences can be designed to encode specific proteins; the most well-known example of this are the mRNA vaccines for COVID-19.

mRNA molecules are large and chemically unstable, so a vector must be utilised to deliver mRNA to the cells. One of the most advanced technologies for the delivery of mRNA are lipid nanoparticles (LNPs), which are composed of ionizable lipids, cholesterol, helper lipids and polyethylene glycol.

A team of researchers led by Assistant Professor Yusuke Sato and Professor Hideyoshi Harashima at the Faculty of Pharmaceutical Sciences, Hokkaido University, and by Kazuki Hashiba at the Nitto Denko Corporation have developed a novel branched ionizable lipid which, when included in LNPs, greatly increases the efficiency of mRNA delivery.

Previous work has shown that ionizable lipids with branching tails increases the efficiency of mRNA delivery by LNPs. However, two major issues have prevented a systematic analysis of the effect of branching ionizable lipids: firstly, tail branching leads to an enormous diversity of chemicals; and secondly, the number of commercially available branching ionizable lipids is limited.

To overcome these hurdles, the researchers generated a systematic lipid library of branching ionizable lipids, and limited this library to a specific subset of branching lipids which could be described with just two parameters; total carbon number and symmetry. They then tested the 32 lipids in this library for their effect on the stability of LNPs containing mRNA (LNP-RNA).

See also: Mouthwash could aid prevention of respiratory diseases

expanding lipid libraries

The team discovered that LNP-RNAs which contained highly symmetric branched lipids exhibited greater microviscosity, and the higher microviscosity was positively correlated with increased stability of LNP-RNAs in storage. Highly symmetric branched lipids in LNP-RNAs are also positively correlated with protein expression in the liver and spleen in mice. They determined that the length of the branched chain affects organ selectivity.

The most stable storage and most efficient delivery of the mRNA was achieved by the branching lipid CL4F 8-6. The authors demonstrated that this particular lipid could be used in LNPs designed for gene editing, achieving a 77% suppression of the target gene in mice with just one dose of LNPs.

This study revealed that branched lipids with a high level of symmetry contributed to optimal LNP properties for efficient intracellular delivery and stable formulations. Future work will focus on developing expanded lipid libraries to understand the properties of other branched lipids, and may lead to design of novel lipids.

The results are published in the journal Small Science.

Image: A cross-section of an LNP-RNA. The mRNA (red) is encapsulated by lipids (blue spheres with tails) © Yusuke Sato.

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM