Understanding of evolution improved by microalgae discovery

Understanding of evolution improved by microalgae discovery

Algae and plant evolution is better understood after scientists discovered a sexual reproduction process in microalgae

Scientists have discovered a sexual reproduction process in microalgae that helps them better understand algae and plant evolution.

Their discovery could lead to new industrial applications for microalgae, ranging from wastewater treatment to production of food ingredients and pigments.

The team conducted their studies on Galdieria, a unicellular species of red microalgae found in sulfuric acid hot springs around the world and expected to be an important nutrition source for humans.

Microalgae possess a high carbon dioxide fixation capacity. This fixation is the process by which the carbon dioxide is changed into organic compounds.

Microalgae’s fixation capacity is higher than plants and microalgae contain higher concentrations of proteins, vitamins, and pigments. In recent years, researchers and businesses have been working to develop the quick-growing Galdieria as an industrial source of vitamins and pigments.

Galdieria is quite versatile, capable of making its own energy through photosynthesis, using light and carbon dioxide.

It uses a mix of different sources of energy and carbon and obtains its nutrients by consuming extracellular sugars or sugar alcohols. Galdieria is also able to tolerate higher levels of salt and heavy metals than many other microalgae, yet its genome size is very small.

Because of Galdieria’s versatility, scientists consider it to be an emerging system for biotechnology applications. However, because Galdieria is surrounded by a thick and rigid cell wall, it requires energy-intensive physical processing to extract its cellular contents.

The cell wall also hampers genetically modifying the Galdieria.

See also: Researchers genetically modify crops to better harness the sun

Algae and plant evolution

During their research, the team learned that the known cell-walled form of Galdieria is a diploid, a type of cells that contain two complete sets of chromosomes.

However, when these diploids are exposed to a specific environment, a cell wall-less haploid is produced and the wall-less haploid only contains one set of chromosomes.

To further their research, the team succeeded in stably propagating the cell wall-less haploid and in converting the haploid back to a diploid.

Shunsuke Hirooka, a project assistant professor with the National Institute of Genetics, Japan, said: “We discovered a sexual reproduction process in microalgae that emerged early in algal and plant evolution.”

Hirooka’s colleague, Professor Shin-ya Miyagishima, added: “We successfully developed a genetic modification technique for Galderia by using the cell-wall-less haploid.

“The procedure enables generating ‘self-cloning’ lines which do not contain any heterologous DNA sequence for industrial use.

“For example, we have succeeded in generating blue-coloured algae (blue is the colour of phycocyanin, which is used as a natural blue colourant in certain food products), which does not exist naturally.”

Clarifying the evolutionary process

The team’s findings are significant because although sexual reproduction is also found in some unicellular algae, the ancestors of plants, sexual reproduction has never been found in many unicellular algae that emerged early in evolution.

Hirooka advised: “These unicellular algae have been assumed to proliferate only by cell division, or asexual reproduction, and the origin and evolutionary process of sexual reproduction in algae and plants have been unclear.”

Looking ahead, the researchers believe their findings will help further clarify the evolutionary process and origin of sexual reproduction in algae and plants. The team’s discoveries hold the potential to unlocking exciting future uses for the microalgae Galdieria.

Miyagishima concluded: “The haploid discovered in this study has the same growth potential as the diploid, and its contents can be easily extracted and genetically modified, which facilitates industrial use, of Galdieria and is expected to create advanced forms of microalgae utilisation, such as vaccine-containing feed using algae expressing viral proteins as antigens.”

The research is published in the Proceedings of the National Academy of Sciences (PNAS).

Image: Scientists have discovered a sexual reproduction process in microalgae that helps them to better understand algae and plant evolution.

Credit: Shunsuke Hirooka & Shin-ya Miyagishima, National Institute of Genetics, ROIS.

Leave a reply

Your email address will not be published.

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM

Share This