‘Nano inks’ could control temperature in buildings and cars

‘Nano inks’ could control temperature in buildings and cars

‘Phase change nano inks’ could passively control temperature in buildings and cars according to research from the University of Melbourne

World-first ‘phase change inks’ that could transform how we heat and cool buildings, homes and cars – to achieve sophisticated ‘passive climate’ control – have been developed, with the potential to help reduce energy use and global greenhouse gas emissions

New research led by Dr Mohammad Taha, of the University of Melbourne, documents proof-of-concept ‘phase change inks’ that use nanotechnology to control temperature in everyday environments. They achieve this by adjusting the amount of radiation that can pass through them, based on the surrounding environment.

Taha said these inks could be used to develop coatings to achieve passive heating and cooling, reducing our need to rely on energy creation to regulate temperatures.

He said: “Humans use a lot of energy to create and maintain comfortable environments – heating and cooling our buildings, homes, cars and even our bodies.

“We can no longer only focus on energy generation from renewable resources to reduce our environmental impact. We also need to consider reducing our energy consumption as part of our proposed energy solutions, as the impacts of climate change become a reality.

“By engineering our inks to respond to their surroundings, we not only reduce the energy expenditure, but we also remove the need for auxiliary control systems to control temperatures, which is an additional energy waste.”

See also: Wood-based technology removes 80% of dye pollutants


Passive climate control


Passive climate control would enable comfortable living conditions without expending energy unnecessarily.

For example, to provide comfortable heating in winter, the inks applied on a building façade could automatically transform to allow greater sun radiation to pass through during the day, and greater insulation to keep warmth in at night.

In summer, they could transform to form a barrier to block heat radiation from the sun and the surrounding environment.

The versatile ‘phase change inks’ are a proof-of-concept that can be laminated, sprayed or added to paints and building materials.

They could also be incorporated into clothing, regulating body temperature in extreme environments, or in the creation of large-scale, flexible and wearable electronic devices like bendable circuits, cameras and detectors, and gas and temperature sensors.

Taha said: “Our research removes the previous restrictions on applying these inks on a large scale cheaply. It means existing structures and building materials can be retrofitted. With manufacturing interest, the inks could reach market in five to ten years.

“Through collaboration with industry, we can scale up and integrate them into existing and new technologies as part of a holistic approach to tackling the world’s climate change energy challenges.

“The potential of this material is huge as it can be used for so many different purposes – like preventing heat build-up in laptop electronics or on car windshields. But the beauty of this material is that we can adjust its heat absorption properties to suit our needs.

“Already, a different type of phase change material is used to manufacture smart glass, but our new material means we can engineer smarter bricks and paint. This new nanotechnology can help retrofit existing buildings to make them more efficient. It’s better for the environment and sustainable for the future.”

The breakthrough was achieved by discovering how to modify one of the main components of ‘phase change materials’ – vanadium oxide (VO2).

Phase change materials use triggers, like heat or electricity, to create enough energy for the material to transform itself under stress.

However, phase change materials previously needed to be heated to very high temperatures for their ‘phase changing’ properties to be activated.

Taha said: “We used our understanding of how these materials are put together to test how we could trigger the insulator-to-metal (IMT) reaction, where the material basically acts as a switch to block heat beyond a particular temperature – near-room temperature (30-40oC).”

And he advised the next step will involve taking the research, patented by the University of Melbourne, to production.

The research is published in The Royal Society of Chemistry’s Journal of Materials Chemistry A .

Image: The new inks use nanotechnology to control temperature in everyday environments. © Dr Mohammad Taha, University of Melbourne.

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 4 May 2023

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM