Map reveals complicated world in which cells repair damaged DNA

Map reveals complicated world in which cells repair damaged DNA

A new map from the UC San Diego School of Medicine reveals the complicated world in which cells seek to repair damaged DNA

A diverse team of scientists, led by researchers at University of California San Diego School of Medicine, have produced a novel map that depicts the human body’s enormously complicated and highly evolved system for addressing and repairing DNA damage – a cause and consequence of many diseases.

Damage to DNA and replication errors caused by stress and other factors play a major role in disease, and are a hallmark of cancer and other afflictions.

To maintain the integrity of the genome and support normal functioning and health, cells have evolved an intricate network of cell-cycle checkpoints and DNA damage repair tools, collectively known as DNA damage response or DDR. 

Defects in DDR are linked to numerous diseases, including cancer and heritable neurological disorders caused by unstable DNA, erroneous repeats, rearrangements and mutations.

Conversely, a better understanding of how DDR works and why it sometimes fails provides new therapeutic opportunities to treat or cure the same diseases. 

Senior author Trey Ideker, PhD, professor at UC San Diego School of Medicine and UC San Diego Moores Cancer Center, said: “The ongoing challenge, of course, is that DDR is an extremely complex system involving hundreds of different proteins assembling in different ways to address different problems.

“You can’t fix a problem with DDR until you understand how it works.”

 

 

Protein assemblies in DDR

 

In the new paper, Ideker and colleagues take a major step forward in elucidating the complexities and functions of DDR, producing a multi-scale map of protein assemblies in DDR. 

Unlike earlier maps, based on published scientific literature that included conflicting findings or tend to focus only on well-studied mechanisms, the new reference map employs affinity purification mass spectrometry and a broad collection of multi-omics data to develop a fuller picture; a hierarchical organisation of 605 proteins in 109 assemblies that captures canonical repair mechanisms and proposes new DDR-associated proteins linked to stress, transport and chromatin functions within cells. 

Multi-omics is a new approach in which data sets of different omics groups are combined during analysis to create a more complete and nuanced understanding of whole systems and organisms. 

The cell contains different classes of molecular processes: genomics; transcriptomics; proteomics; and others. Each of these ‘omics’ molecular processes involves interactions between thousands of genes, transcripts or proteins.

To make sense of this complexity, scientists have tended to take a reductionist view, examining omics one at a time. 

In contrast, systems biology considers molecular processes simultaneously and holistically, using machine learning and other tools to evaluate to what extent different molecular processes inform any given interaction, and how whole systems and networks work.

Machine learning describes computer systems that are able to learn and adapt without following explicit instructions. It is an application of artificial intelligence.

First author Anton Kratz, PhD, formerly a research scientist in Ideker’s lab who now works at the System Biology Institute in Tokyo, Japan, said: “Experimental screens of ever-increasing scale are capturing interactions between genes or proteins in human cells, often beyond what has been described in literature.

“They can, in principle, be used to create data-driven maps of DDR.”

 

Without DNA damage

 

But screening presents its own challenges since different forms may measure molecular processes in isolation, missing some interactions that appear only under certain stresses or conditions.

To address these challenges, the researchers measured new protein-protein interaction networks centred around 21 key DDR factors with and without DNA damage.

They developed a machine learning approach to combine new data with existing data, and statistical analysis that showed the results significantly informed the resulting map.

Kratz said: “To me, two things were most revelatory. First, the sheer amount of novel proteins in the map. About 50% of the proteins included in the map following our data-driven paradigm were not included in the literature-curated maps considered here, justifying a data-driven approach to building the map. 

“Second and related to that, membership to DDR is not a binary affair, but takes place on a continuum (and we quantify this continuum), extending to stress, transport, and chromatin functions.”

The researchers have created interactive software that will enable other scientists to investigate proteins and DDR interactions of specific interest.

Kratz said scientists can also use the map as a component in visible machine learning systems that potentially could illuminate larger questions, such as how DDR is relevant in the transition from genotype (the genetic constitution of an individual organism) to phenotype (characteristics of an individual resulting from interaction of its genotype with the environment).

For example, how drug or toxin exposure might change the DDR. 

The study is published in Cell Systems.

Image: An artistic rendering of the concept of DNA damage and repair. Numerous diseases are linked to or caused by alterations that affect genomic integrity and the ability of cells to function and divide normally. A process called DNA damage response has evolved to repair errors and mutations. Researchers have produced a new map that more fully captures the complexity of that process. Credit: National Institute of Health.

Research Aether / Health Uncovered

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 4 May 2023

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM