A study has found that a new medical device that gently moves the oesophagus is making heart ablations safer

A new device invented with the help of an electrophysiologist at The Ohio State University Wexner Medical Center makes a heart procedure safer for patients suffering from atrial fibrillation (AFib), a common irregular heart rhythm.

AFib affects millions of people worldwide and greatly increases their risk of stroke and heart failure. To treat AFib, doctors use cardiac ablation to help restore the heart’s rhythm.

Heat or cold energy delivered through a catheter destroys the heart tissue causing rapid and irregular heartbeats.

While the procedure is effective in treating AFib, the energy from the catheter tip is used only a few millimetres from the oesophagus.

There is a risk that the energy can cause a rare, but often fatal, hole between the oesophagus and the heart called an atrioesophageal fistula.

To reduce the risk of damage to the oesophagus, Emile Daoud, MD, section chief of the cardiac electrophysiology programme and professor of internal medicine in the College of Medicine, helped develop the concept of physically moving the oesophagus away from the catheter tip during an AFib ablation procedure.

Using funds from an Accelerator Award from The Ohio State University’s Keenan Center for Entrepreneurship, Daoud helped design and test the device, called ESOlution.

A clinical trial in the United States and Argentina showed that using the device significantly reduced injury to the oesophagus without any adverse effects. Results of the trial were presented during the Heart Rhythm Society’s annual meeting.

Daoud said: “It has been frustrating to not have an effective method to protect the oesophagus while delivering the ablation energy at the desired location.

“By using suction force, we’re able to pull in the oesophagus and then move the entire segment to the side by only about an inch.

“This creates a safe pathway to deliver the treatment.” 



Heart ablation patients


The clinical trial of 120 heart ablation patients found that without the device, over a third had oesophageal injuries, but when the device was used, less than 5% had any injury to the oesophagus, Daoud said.

If approved by the FDA for commercial use, the device would be the first specifically developed and tested therapy to prevent ablation-related oesophageal injury.

Ohio State owns a piece of the technology being developed by S4 Medical Corp. Daoud is co-founder of the medical company.

He said: “How to safely protect the oesophagus has been a well-recognised problem for at least 15 years.

“There are several techniques such as measuring the temperature inside the oesophagus and using ultrasound or CT imaging to see where it’s located, but we still have oesophageal injuries.

“This device is effective, inexpensive and connects to a vacuum suction, which is already in every electrophysiology laboratory.”

Though this hasn’t been tested, Daoud believes moving the oesophagus may also improve the effectiveness of the procedure.

With the oesophagus out of the way, doctors can safely deliver larger amounts of ablation energy when it’s needed. 

Understanding where the oesophagus was moved relative to the location of the ablation catheter tip may also help manage and assess patients who have concerning symptoms after ablation.

Safe deviation of the oesophagus means that an injury to the oesophagus is unlikely the cause of a patient’s post-procedure symptoms.


Randomly selected


Amanda Mitchem, 59, of Mount Vernon, Ohio participated in the clinical trial at Ohio State and was randomly selected to have the device inserted during her ablation.

She’d been suffering from AFib and simple daily tasks wore her out. When medication and mild electrical shocks to the heart didn’t work, she had the ablation. 

She said: “The following day was like night and day. I was breathing so much better, and I hadn’t felt that good in probably a year.

“Before that, I could be just sitting and feel like I ran ten miles.” 

Now she’s back to travelling to West Virginia to play with her granddaughter and sharing her story with friends and family. 

She said: “Now I can breeze through going grocery shopping or to the flea market or yard sales. I can actually stand and have a conversation without having to gasp for breath.”

Image: Heart ablations are an effective treatment for persistent AFib but can also cause serious damage to the nearby oesophagus, an injury that can be life-threatening. Doctors at The Ohio State University Wexner Medical Center developed a new surgical device that gently diverts the oesophagus out of harm’s way, making ablation procedures safer. Credit: The Ohio State University Wexner Medical Center.

Research Aether / Health Uncovered