Wolf colour linked to ability to survive CDV

Wolf colour linked to ability to survive CDV

The colour of a wolf’s fur has been linked to its ability to survive canine distemper virus according to a study of packs in Yellowstone National Park

New research from the University of Oxford, Yellowstone National Park and Penn State, may have finally solved why wolves change colour across the North American continent.

If you were to travel from Arctic Canada and head south down the Rocky Mountains into the US toward Mexico, the further south you go, the more black wolves there are. The reasons why have long puzzled scientists.

Research lead Professor Tim Coulson is from the Department of Biology at the University of Oxford. He said: “In most parts of the world black wolves are absent or very rare, yet in North America they are common in some areas and absent in others.

“Scientists have long wondered why.

“We now have an explanation based on wolf surveys across North America and modelling motivated by extraordinary data collected by co-authors who work in Yellowstone.”

See also: India poised for cheetah reintroduction

canine distemper virus

Coat colour in wolves (Canis lupus) is determined by a gene called CPD103. Depending on the variant of the gene a wolf has, its coat can either be black or grey.

The researchers postulated that this gene also plays a role in protecting against respiratory diseases such as canine distemper virus (CDV).

This is because the DNA region containing the gene also encodes for a protein that plays a role in defending against infections in the lungs of mammals.

They predicted that having a black coat would be associated with the ability of wolves to survive an infection with CDV.

To test this idea, they analysed 12 wolf populations from North America, to examine whether the probability of a wolf being black was predicted by the presence of CDV antibodies.

If a wolf has CDV antibodies, then it has caught CDV in the past and survived.

They found that wolves with CDV antibodies were more likely to be black than grey. They also found that black wolves were more common in areas where CDV outbreaks occurred.

The researchers analysed over 20 years’ data from the wolf population at Yellowstone National Park and found that black wolves were more likely to survive CDV outbreaks compared with grey wolves.

These results led them to hypothesise that in areas where distemper outbreaks occur wolves should choose mates of the opposite coat colour to maximise the chance their cubs would have black coats.

They used a simple mathematical model to test this idea and the predictions from their model closely matched the observations that black and grey wolves were more likely to pair in areas where CDV outbreaks are common.

This competitive advantage is lost in areas where CDV outbreaks do not occur.

wolf morphology

These results are consistent with the idea that the frequency of CDV outbreaks across North America is responsible for the distribution of black wolves, because having the gene for a black coat may also provide protection against the virus.

It also explains why mating pairs in Yellowstone, where canine distemper outbreaks occur, tend to be black-grey.

Peter Hudson, Willaman Professor of Biology, Penn State said: “It’s intriguing that the gene for protection against CDV came from domestic dogs brought by the first humans entering North America, and the CDV disease virus emerged in North America many thousands of years later, once again from dogs.

“What I love about this study is how we have been able to bring together experts from so many fields and a range of approaches to show how disease can have remarkable impacts on wolf morphology and behaviour.

“We are learning that disease is a major evolutionary driver that impacts so many aspect aspects of animal populations.”

The researchers speculate that other species may follow a similar pattern to wolves.

Many insects, amphibians, birds, and non-human mammals have associations between colour and disease resistance.

It might be that the presence a disease, or how frequently a disease outbreak occurs, is an important factor affecting the colour of mate an animal prefers.

The research is published in Science.

Image: Members of the Druid Peak Pack in Yellowstone National Park engage in a game of chase. The grey coloured wolf represents the homozygous grey phenotype, while the black coloured wolf represents the K-locus black phenotype. Credit: Daniel Stahler/ NPS.

Leave a reply

Your email address will not be published. Required fields are marked *

Aether: Issue 3 Feb 2023

Aether: Issue 2 Nov 2022

Aether: Issue 1 Aug 2022

Subscribe for free

Latest Testimonial

What a beautiful motto: Discoveries must be read and not just published. When I was contacted by Aether as a new digital service to share scientific and technological insights I had my doubts that this was really going to be according to what I call the “open source & makers’ spirit”: knowledge should be free and it is there to be shared.

Well, Aether is faithful to its motto and shares discoveries freely. It has been a pleasure to collaborate for the interview and subsequent article. It has been greatly self satisfying to see how the interview was professionally and truthfully redacted and then published. Sharing thoughts and sparks for discussions is fundamental to the progress of society. Your journal offers clarity and brevity and I believe it provides the sparks to ignite any reader whether academic or not into action.

Dr Maria-Cristina Ciocci
Co-founder and Manager of non-profit organisation De Creative STEM,GirlsInSTEM